Presentation to the 9th International Oat Workers Conference Beijing, China, June 20-23, 2012

Breeding for an "ideal" Milling Oat: Challenges and Strategies

Weikai Yan*, Judith Fregeau-Reid, Jennifer Mitchell-Fecth, Denis Pageau, Richard Martin, John Rowsell, Aaron Beatie , Allan Cummiskey Canada *weikai.yan@agr.gc.ca

What makes an ideal milling oat?

It is not easy!

ChallengesStrategies

The 2011 Nationwide Oat Test in Canada

Entries

- 45 new lines from CRC-AAFC, Winnipeg
- 45 new lines from ECORC-AAFC, Ottawa
- 6 checks representing the oat production regions of Canada
- Locations
 - 3 west and 4 east locations
- Traits measured

Test Location Across Canada

Yield

The genotype by location interaction relative to the genotype main effect was not very large, except that PEI was more different from other locations. So selection based on mean yield is a reasonable option, which will simplify the discussion.

NL

0.58

0.62

0.47

0.69

0.56

0.56

0.62

0.39

0.44

0.62

0.57

LAC

NL

OTT

PEI

SASK

NORM

PORTAGE

Beta-glucan

Data from two locations so far. The two locations were highly correlated. So selection based on mean is a reasonable option, which will simplify the discussion. CRC lines tended to have high BGL while ECORC lines have low BGL.

Lacombe

0.85

0.84

0.84

0.86

0.81

0.82

NEWL

norm3

Portage

Saskatoon

OTT

PEI

NEWL

0.85

0.92

0.83

0.83

0.88

0.84

0.84

0.83

0.82

The genotype by location interaction relative to the genotype main effect was not very large. So selection based on mean values is a reasonable option, which will simplify the discussion.

Lacombe NEWL

0.64

0.77

0.64

0.45

0.65

NEWL

Norm3

Portage

Saskatoon

OTT

PEI

The genotype by location interaction relative to the genotype small. So selection based on mean values is a which will simplify the

Row/Col

NEWL

norm3

Portage

Saskatoon

OTT

PEI

Protein

The genotype by location interaction relative to the genotype main effect was not very large. So selection based on mean yield is a which will simplify the

0.77

0.73

0.64

0.66

0.50

0.60

NEWL

OTT

PEI

NORM3

PORTAGE

SASKATOON

Test-Weight

The genotype by location interaction relative to the genotype main effect was not very large. So selection based on mean values is a reasonable option, which will simplify the discussion.

Lacombe

0.58

0.53

0.14

0.50

0.41

0.48

NEWL

norm3

Portage

Saskatoon

OTT

PEI

Kernel-Weight

The genotype by location interaction relative to the genotype main effect was not very large. So selection based on mean values is a reasonable option, which will simplify the discussion.

NEWL

PORTAGE

NORM3

SASKATOON

OTT

PEI

Undesirable correlations

	тwт	ткw	GROAT	YIELD	OIL	PROTEIN
Traits						
TKW	0.46**					
GROAT	0.52**	0.37**				
YIELD	0.07	0.38**	0.13			
OIL	-0.12	-0.49**	-0.26*	-0.38**		
PROTEIN	0.05	-0.04	-0.19	-0.67**	0.06	
BGL	-0.26*	-0.47**	-0.43**	-0.38**	0.57**	0.09

Challenges

- High level for a desirable trait not even a challenge!
- Association between any two traits does not seems to be too strong to be combined in a single genotype not a difficult challenge
 However, when more traits are considered, it becomes a real challenge!

Yield, groat, and BGL

 CRC lines tended to have higher BGL but lower groat and yield

CRC lines plus checks

CRC lines only

ECORC lines

ECORC lines with higher yields

The three-way association persists...

- Depending on the population of genotypes, there was always a negative, undesirable correlation
 - Yield vs. groat, or
 - Groat vs. beta-glucan, or
 - Yield vs. beta-glucan

No genotype was best for all three traits, ever

Breeding for an ideal milling oat is more than "a piece of cake"!

 The undesirable associations among the breeding objectives are logically inevitable

$Groat\% = \frac{Groat Yield}{Grain Yield}$

$BGL(\%) = \frac{BGL \text{ Yield}}{\text{Groat Yield}}$

 $BGL\% = \frac{BGL \,\text{Yield}}{\text{Groat}\% \times \text{Grain Yield}}$

A two-step strategy

Given an "ideal" cross and therefore a promising selection population:

Set a minimum requirement for each trait and do an initial screening (independent culling) Set weights to the breeding objectives (desirable traits) to calculate an Selection Index and rank preselected genotypes based on the selection index Step 1: Set a minimum requirement for each trait using the check cultivars for initial screening

Genotype	GROAT	YIELD	BGL	All Pass
Bradley	Pass	Pass	Pass	YES
Dancer	Pass	Pass	Pass	YES
Leggett	Pass	Pass	Pass	YES
Morgan	Pass	Pass	Pass	YES
Orrin	Pass	Pass	Pass	YES
Rigodon	Pass	Pass	Pass	YES
OA1225-2	Pass	Pass	Pass	YES
OA1342-1	Pass	Pass	Pass	YES
OA1344-1	Pass	Pass	Pass	YES
OA1346-1	Pass	Pass	Pass	YES
OA1352-1	Pass	Pass	Pass	YES
OA1352-2	Pass	Pass	Pass	YES
OA1354-1	Pass	Pass	Pass	YES
OA1357-2	Pass	Pass	Pass	YES

For each trait, use the level of the poorest Check cultivar as the minimum requirement

Step 2: Set weights to the breeding objectives to calculate a Selection Index: an example

Trait	Weight
YIELD	1.0
GROAT	1.0
BGL	1.0
TWT	0.6
KW	0.5
PROTEIN	0.5
OIL	-0.6

Rank the selected genotypes on the Selection Index

	Trait	GROAT	YIELD	BGL	тwт	Yield (Rust)	ткw	PROTEIN	OIL	Selection Index
	OA1357-2	0.94	1.00	1.00	0.94	0.93	0.96	0.92	0.80	0.99
	Orrin	0.94	0.98	0.91	0.99	0.90	1.00	0.89	0.75	0.97
	Leggett	0.94	0.87	0.93	1.00	0.92	0.92	0.97	0.79	0.95
	Dancer	1.00	0.93	0.81	1.00	0.92	0.92	0.87	0.72	0.95
	OA1342-1	0.98	0.88	0.82	0.97	0.98	0.96	0.96	0.76	0.94
	OA1352-2	0.94	0.91	0.86	0.93	0.93	0.90	0.99	0.79	0.93
	Morgan	0.92	0.97	0.83	0.95	0.92	0.93	0.85	0.70	0.93
	OA1346-1	0.93	0.92	0.83	0.97	0.94	0.96	0.94	0.82	0.93
	OA1344-1	0.94	0.87	0.90	0.93	1.00	0.86	0.96	0.81	0.93
	OA1225-2	0.97	0.96	0.85	0.98	0.92	0.87	0.82	0.85	0.92
	Bradley	0.95	0.90	0.83	0.94	0.89	0.95	0.93	0.77	0.92
	OA1354-1	0.96	0.94	0.82	0.97	0.87	0.85	0.92	0.81	0.92
	OA1352-1	0.93	0.92	0.82	0.97	0.90	0.80	1.00	0.88	0.90
	Rigodon	0.94	0.90	0.85	0.98	0.85	0.96	0.89	1.00	0.89

Trait profile of OA1357-2

Conclusion: challenges

- Two-trait associations does not seem to be so difficult
- Three-trait or multi-way association is persistent, and logically inevitable

Conclusion: strategies

Given a promising breeding population, selection should be conducted in two steps:

1. Set a minimum requirement for each trait and conduct an initial screening

2. Set Weights to the breeding objectives (desirable traits) and calculate an Selection Index

— is it possible to have some "official" or consensus weights?

--Is it more (or less) practical for the molecular scientists to treat the "Selection Index" as a "trait" in MAS?

Conclusion: result

The new oat line OA1357-2 appeared to have an improved package of yield, BGL, groat, and other desirable traits

 Using OA1357-2 as a parent may lead to further improvement (e.g., crossing with Dancer)

Acknowledgement

Technical support of Brad de Haan, Steve Thomas, Dorothy Sibbitt, John Kobler, Isabelle Morasse, Kim Stadnyk, Wes Dyck, and Tom Zatorski

Funded by AAFC and POGA

THANK YOU!