

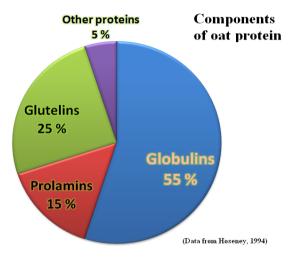
9th international oat conference

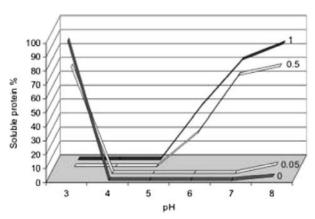
Structural, physicochemical and emulsion properties of oat proteins deamidated by protein-glutaminase

Zhong-qing Jiang, Loponen Jussi, Tuula Sontag-Strohm and Hannu Salovaara
University of Helsinki

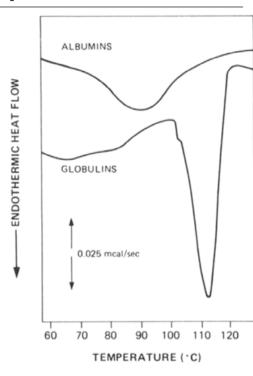
Oat proteins - general knowledge

- Unique among cereal proteins
 - Concentration in grains: 15% to 20% (Mirmoghtadaie et al, 2008)
 - Good balance of amino acids
- Rarely applied in beverage food




http://www.easyvigour.net.nz/diettoxin/poats.jpeg http://www.oatmillers.com/images/oatflourbig.jpg

www.helsinki.fi/yliopisto


Oat globulins - Physicochemical properties

Native oat globulin:

- >Predominant in oat
- ➤ Poor water solubility
- ➤ Compact structure
- ➤ Hard to heat denaturize

Differential scanning calorimetric (DSC) thermograms of albumins and globulins from oats (Ma and Harwalkar, 1984)

Solubility profile of oat globulin (Loponen et al., 2007)

Existing commercial products:

24 h

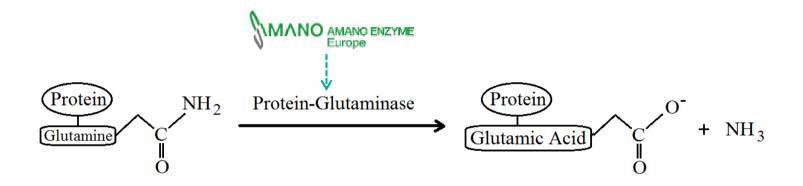
Soya Milk

Oat Milk

Yes, you can:

"Shake before drinking"

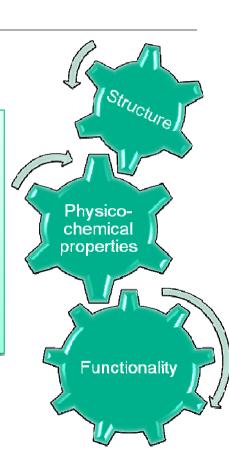
No, you may not:


- Package it in transparent bottles
- Further process it

How to improve?

A Novel Enzyme: Protein-glutaminase

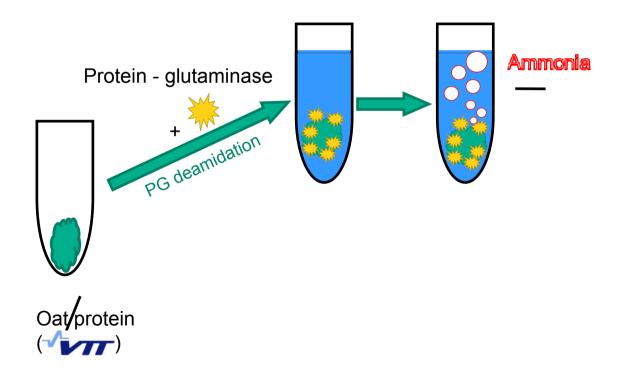
Protein-glutaminase deamidation of food proteins


Protein	Solubility ^a	Structure	Emulsifying property	References
Maize α -zein	Increased	More flexible	Improved	Yong et al, 2004
Wheat gluten	Increased	More flexible	Improved	Yong et al, 2006
Skim milk protein	Increased	_ b	Improved	Miwa et al, 2010

Aims of this study

- Improve the functionality of oat proteins;
- Test the performance of protein-glutaminase on oat proteins;
- Study the relationship between the structural, physicochemical

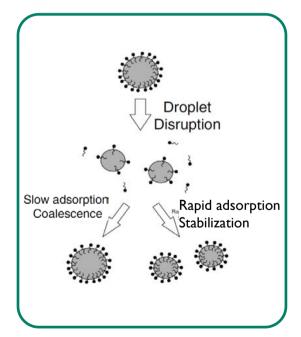
and functional properties of the modified oat proteins.

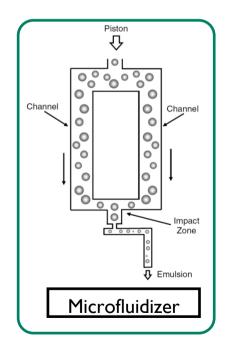

www.helsinki.fi/yliopisto

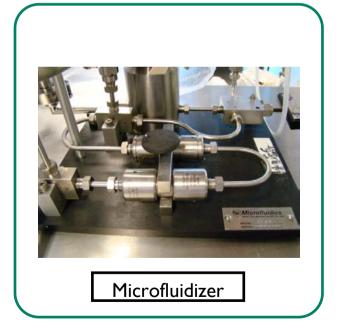
Research methods

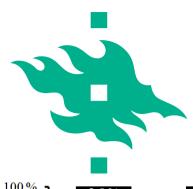
Deamidation degree and enzyme kinetics test

Deamidation on oat protein

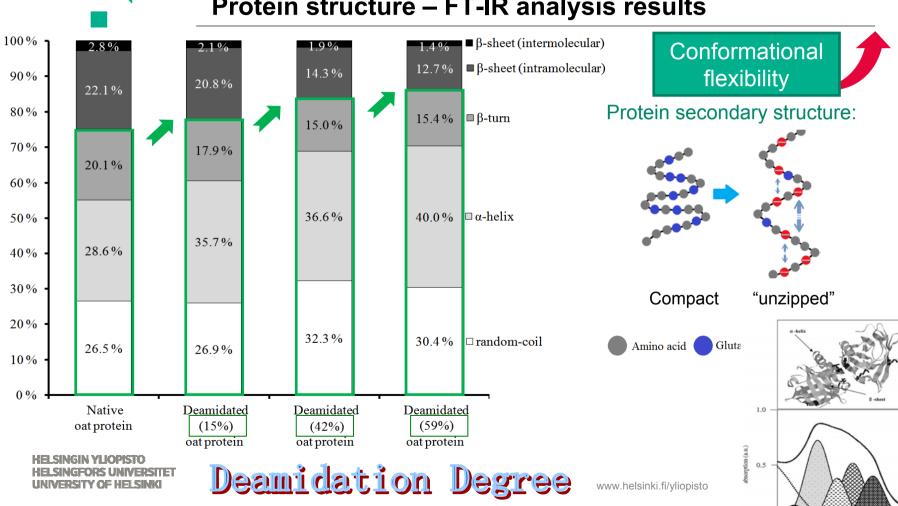


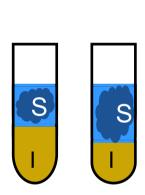

Research methods


Preparation of emulsion

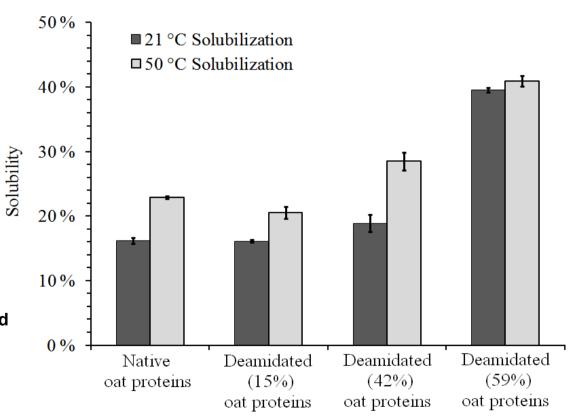

Homogenization

by microfluidizer at 600bar for 10 min



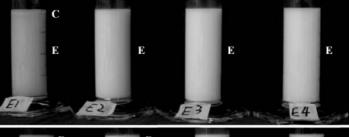


Protein structure – FT-IR analysis results

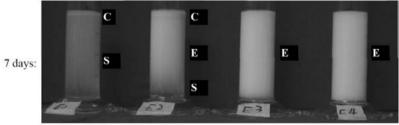


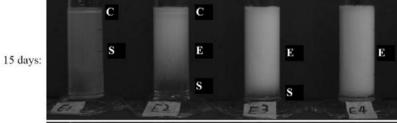
Protein solubility test results

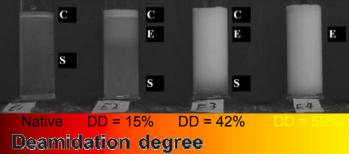
Water solubility of native and deamidated oat proteins:

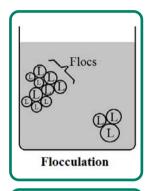


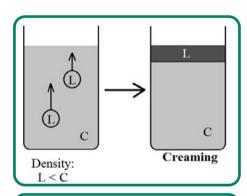
Emulsion stability

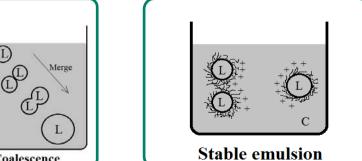

2 h:

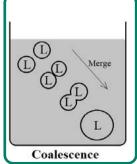

1 day:


30 days:

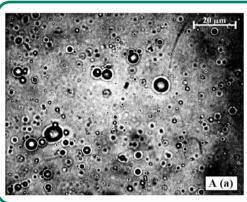


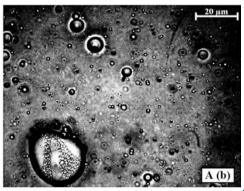


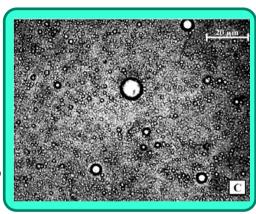


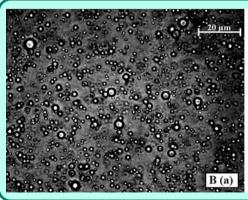


Mechanisms of emulsion stability / instabilities:

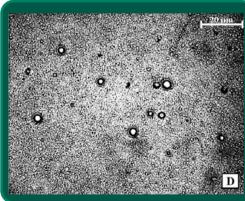



UNIVERSITY OF HELSINKI


Microphotograph – Effects of deamidation degree (DD)

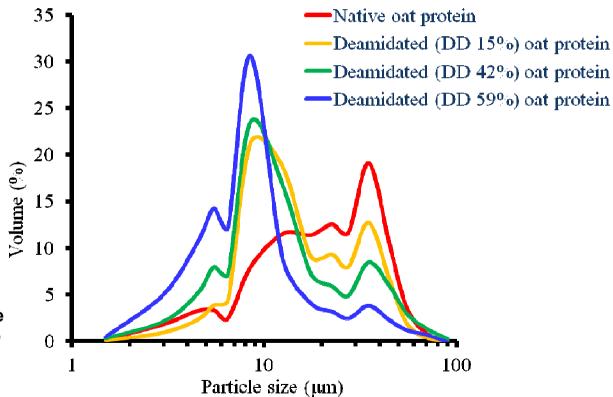


Native





DD = 15%


DD = 59%



Emulsion quality – emulsion droplet size distribution

Particle size distribution of the emulsions stabilized by native and deamidated oat proteins:

Discussion

Protein-glutaminase deamidation on oat proteins caused its:

Improvement of surface electronic charge

Improvement of solubility

Improvement of emulsifying ability

Conclusion:

Protein-glutaminase:

- Worked efficiently with the oat proteins
- Did not hydrolyze the oat proteins
- Deamidation improved the structural flexibility of the oat proteins
- Deamidation improved the solubility of the oat proteins at neutral conditions
- Deamidation improved the emulsifying ability of the oat proteins
- Is potential for applications and further investigations

References:

- Hoseney RC. 1994. Principles of cereal science and technology, 2nd edition
- Yong YH. 2006. Effects of enzymatic deamidation by protein-glutaminase on structure and functional properties of wheat gluten. J. Agric. Food Chem. 54(16):6034-40.
- Kumeta H. 2010. The NMR structure of protein-glutaminase from Chryseobacterium proteolyticum. J. Biomol. NMR 46(3):251-5.
- Yong YH. 2004. Effects of enzymatic deamidation by protein-glutaminase on structure and functional properties of alpha-zein. J. Agric. Food Chem. 52(23):7094-100.
- Miwa N, Yokoyama K, Wakabayashi H, Nio N. 2010. Effect of deamidation by protein-glutaminase on physicochemical and functional properties of skim milk. Int. Dairy J. 20(6):393-9.
- Hu M, Mc Clements J, Decker EA. 2003. Lipid oxidation in corn oil-in-water emulsions stabilized by casein, whey protein isolate, and soy protein isolate. J. Agric. Food Chem. 51:1696-1700.
- Ries D, Haisman AYD, Singh H. 2010. Antioxidant properties of caseins and whey proteins in model oil-in-water emulsions. Int. Dairy J. 20: 72–78
- Carbonaro M, Nucara A. 2010. Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region. Amino Acids 38(3):679-90.
- Loponen J, Laine P, Sontag-Strohm T, Salovaara H. 2007. Behaviour of oat globulins in lactic acid fermentation of oat bran. European Food Research and Technology 225(1):105-10.
- Ma CY, Khanzada G. 1987. Functional-properties of deamidated oat protein isolates. J. Food Sci. 52(6):1583-7.
- Ma C. 1984. Functional properties of acylated oat protein. J.Food Sci. 49(4):1128.
- Malvern Instruments Ltd. 2004. Zetasizer Nano Series User Manual. Chapter 16, Zeta-potential Theory.
- Mirmoghtadaie L, Kadivar M, Shahedi M. 2009. Effects of succinylation and deamidation on functional properties of oat protein isolate. Food Chem. 114(1):127-31.
- Scheuplein RJ, Mizutani A, Yamaguchi S. 2007. Studies on the non-pathogenicity of Chryseobacterium proteolyticum and on the safety of the enzyme: Protein-glutaminase. Regulatory Toxicology & Pharmacology: RTP 49(2):79-89.
- Sze A, Erickson D, Ren L, Li D. 2003. Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow. Journal of Colloid & Interface Science 261(2):402.
- Yamaguchi S. 2001. Protein-glutaminase from Chryseobacterium proteolyticum, an enzyme that deamidates glutaminyl residues in proteins Purification, characterization and gene cloning. European Journal of Biochemistry 268(5):1410-21.

I want to thank:

My gratefulness goes to

Docent Dr. Jussi Loponen, University Lecturer Dr. Tuula Sontag-Strohm and Professor Dr. Hannu Salovaara Thanks for Amano Enzyme Inc.

And Technical Research Centre of Finland .

And

University Lecturer Dr. Päivi Tuomainen, University Technician Mrs. Outi Brinck, Mr. Ossi Knuutila, Professor Dr. Laura Alakukku

THANKS FOR YOUR ATTENTION

QUESTIONS ARE WELCOME AND APPRECIATED

Poster shown in P21