

Variation in fatty acid composition within breeding lines of novel oat varieties as potential ruminant feeds

Alexander A Cowan, Jon M Moorby and Athole H Marshall

Sefydliad y Gwyddorau Biolegol, Amgylcheddol a Gwledig IBERS ABERYSTWYTH Institute of Biological, Environmental and Rural Sciences

(www.quoats.org)

WWW.QUOATS.ORG

HARNESSING NEW TECHNOLOGIES FOR SUSTAINABLE OAT PRODUCTION AND UTILISATION

Introduction

Breeding targets

WWW.QUOATS.ORG

HARNESSING NEW TECHNOLOGIES FOR SUSTAINABLE OAT PRODUCTION AND UTILISATION

Rosemaund

Nest Charleton

Winter Oat Trial Sites 2011

Google"

Background

65% of the oats grown in UK are IBERS varieties

120,000 ha grown in UK (70% winter and 30% spring)

750,000t produced per year

Husked oats for human consumption are increasing

Programme: winter, spring husked and naked

Image © 2011 GeoContent Image © 2011 IGN-France Data SIO, NOAA, U.S. Navy, NGA, GEBCO © 2011 Infoterra Ltd & Bluesky

HARNESSING NEW TECHNOLOGIES FOR SUSTAINABLE OAT PRODUCTION AND UTILISATION

From breeder to plate, this LINK project aims to harness new technologies to advance the yield, value and functionality of oats. The many uses of oats demonstrate the versatility and uniqueness of this important cereal crop.

Delivering a new generation of oats to the market

WWW.QUOATS.ORG

From breeder to plate, this LINK project aims to harness new technologies to advance the yield, value and functionality of oats.

The many uses of oats demonstrate the versatility and uniqueness of this important cereal crop.

Oats Delivering diversity on farm and to the market

Varietal improvements on yield, disease resistance and reliability at harvest.

HUSKED OATS

Big, bold grains to improve milling value. Increasing beta-glucan with its proven health benefits will sustain product innovation.

STRAW Changing the plant model. Improved straw characteristics mean assurance against lodging and the option for higher management approach minus PCR.

NAKED OATS Nutrient dense, 14% oi varieties are on the horizon for the poultry, livestock, horse and birdfeed sectors.

LOW LIGNIN

Low lignin oats – a new plant model with reduced fibre aimed specifically at the dairy and livestock sectors to considerably

reduce methane output and benefit the environment.

AVENANTHRAMIDES

mildew, OMV and understanding

DISEASE

Highly active anti-oxidants in oats deliver unique properties for the pharmaceutical and cosmetic industries.

Securing improved resistance to crown rust,

mycotoxins are key project research areas.

PLATFORM CHEMICALS

Innovative research will bring platform chemicals for the plastic, cosmetic and food industries.

Oats - delivering diversity on farm and to the market

Aims of oat genetic improvement

- To realise the benefits of oats in sustainable and flexible agriculture
- To exploit new opportunities for oats of various end-uses (food, feed and industrial uses)
- To capitalise on the value of oats as a valuable break crop

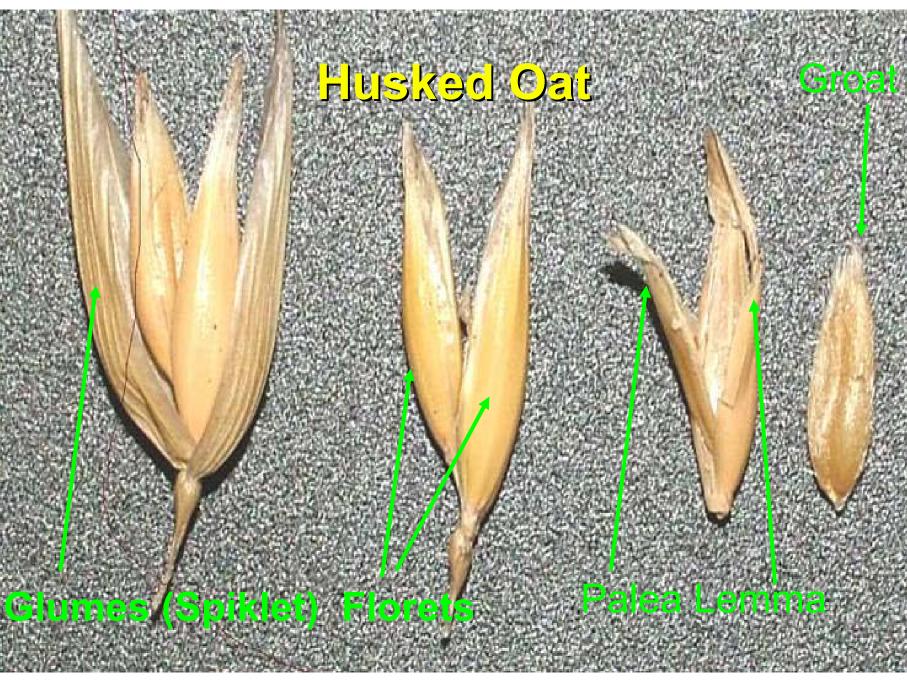
HARNESSING NEW TECHNOLOGIES FOR SUSTAINABLE OAT PRODUCTION AND UTILISATION

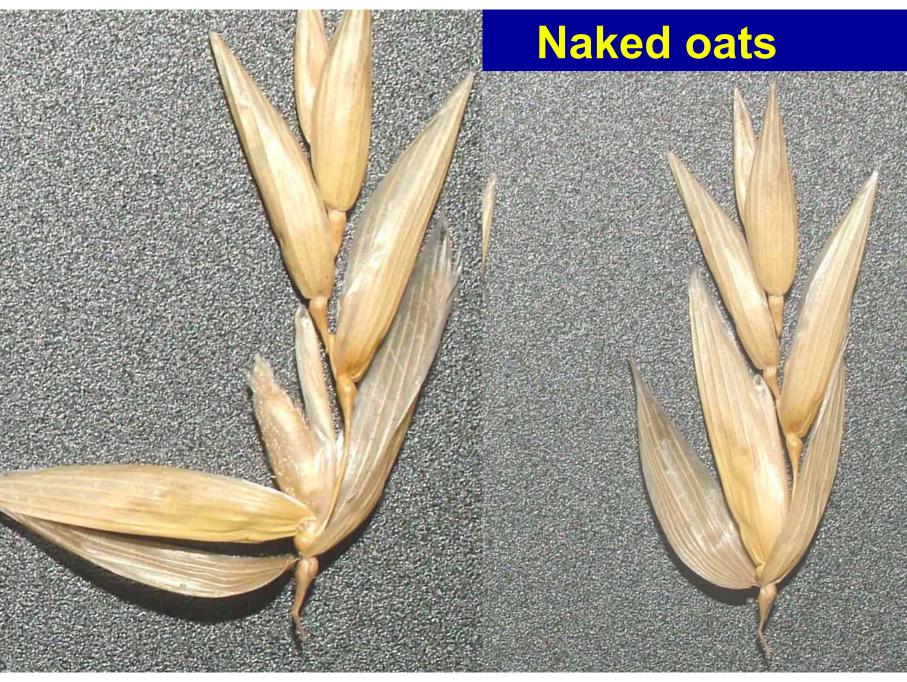
Why Poultry and Livestock Sector interest ?

Reduced environmental impact

Alternative feedstock

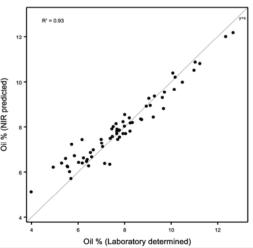
 High oil/low lignin/dwarf

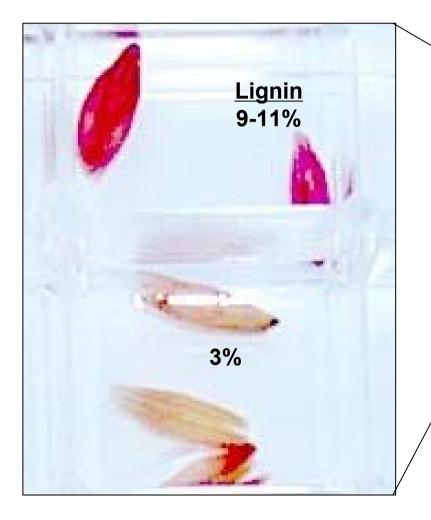

WWW.QUOATS.ORG

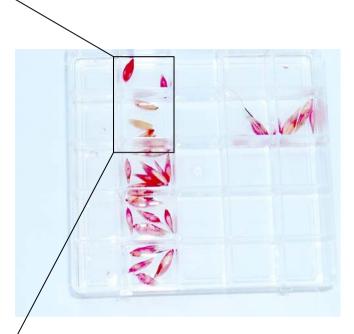

Support UK agriculture

Breeding targets for Naked Oats ⇒Economic competitiveness ☆ Yield ★Oil content Disease resistance

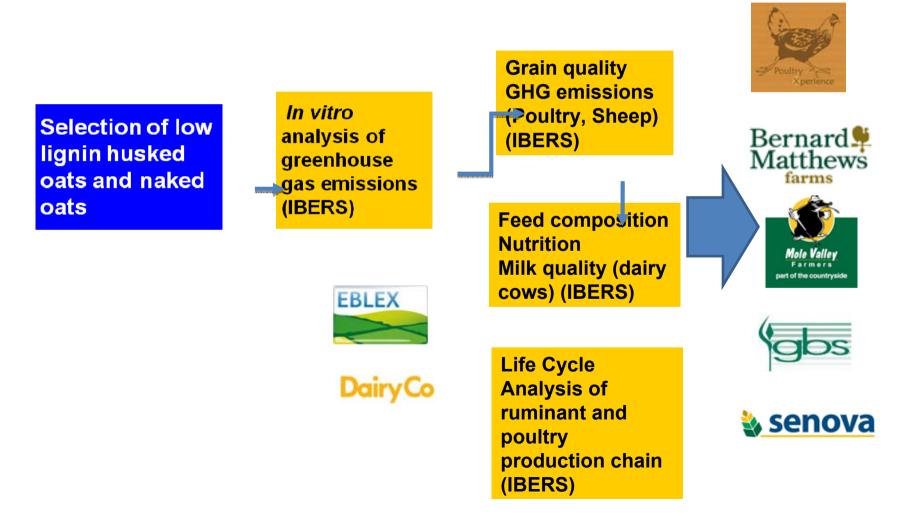
Examples of use of markers in breeding programme


- Dwarf (reduced lodging)- OL0256
- Oil (increase feed value)
 - Markers have been used to select progeny from the breeding programme for subsequent field phenotyping.
 - Novel high oil alleles identified from A. sterilis


High throughput phenotyping


Using Lab based NIR

	type	Ν	Mean (%)	Range	R2	SEC V	Oil % (NIR predicted)
oil	Whole groat	888	7.45	2.79- 12.11	0.92	0.43	% io 6-
n	Whole groat	869	1.84	0.8-2.87	0.94	0.09	4



Genetic variation for low husk lignin is being incorporated.

QUOATS WorkPackage 3

Develop oats for sustainable livestock agriculture that will reduce greenhouse gas emissions and provide a high quality feed

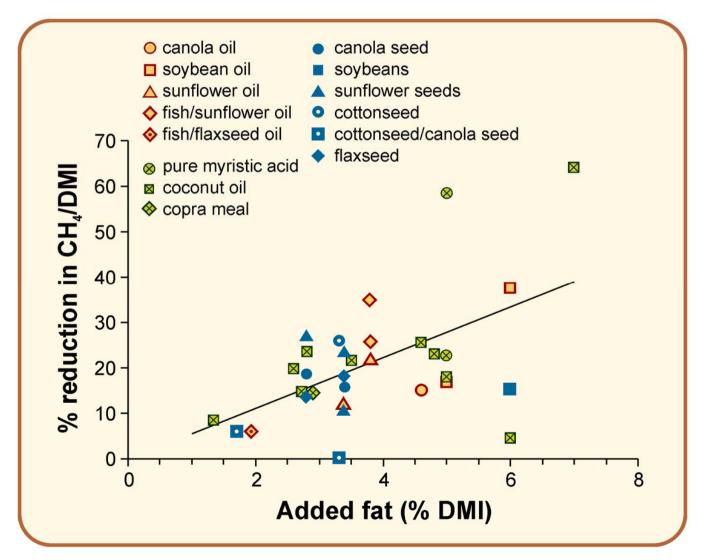
Nutrient content of cereals

	Carbohy drate (g/100g)	Protein (g/100g)	Fat (g/100g)	Dietary Fibre (g/100g)	Ash (g/100g)	Energy, kJ
Oatmeal	58.7	14.0	8.0	9.0	1.8	1473
Whole grain wheat	60.2	13.5	2.1	10.6	1.6	1270
Cornmeal	70.6	8.8	3.5	4.8	1.1	1409
Brown rice	73.9	7.4	2.8	2.3	1.42	1412
Rye	58.7	11.2	2.3	12.8	2.0	1215
Pearled Barley	69.7	9.2	1.6	8.0	1.2	1331
Sorghum	65.6	11	3.3	6.9	1.6	1358

From R W Welsh 2011 in Oats :Chemistry and Technology 2nd Edition Eds FH Webster & PJ Wood

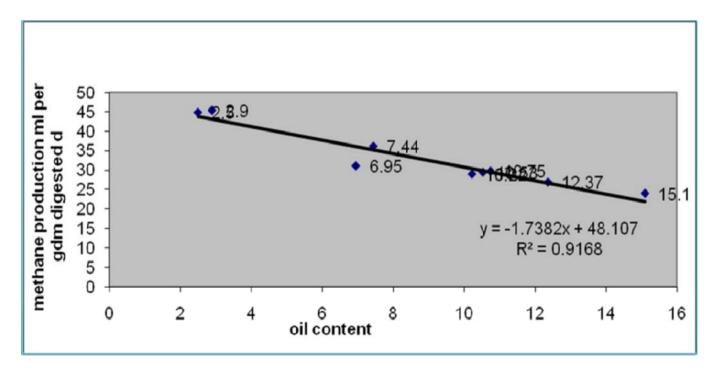
Nutrient content of cereals

	Palmitic (16:0) (g/100g)	Stearic (18:0) (g/100g)	Oleic (18:1) (g/100g)	Linoleic (18:2) (g/100g)	Linolenic (18:3) (g/100g)
Oatmeal	19.0	2.0	36.0	38.0	2.0
Whole grain wheat	18.0	2.0	18.0	56.0	3.0
Cornmeal	12.0	2.0	32.0	50.0	2.0
Brown rice	22.0	2.0	34.0	38.0	2.0
Rye	15.0	1.0	17.0	58.0	7.0
Pearled Barley	22.0	1.0	13.0	56.0	5.0
Sorghum	13.0	1.0	34.0	46.0	2.0


From R W Welsh 2011 in Oats :Chemistry and Technology 2nd Edition Eds FH Webster & PJ Wood

Nutrient content of oats

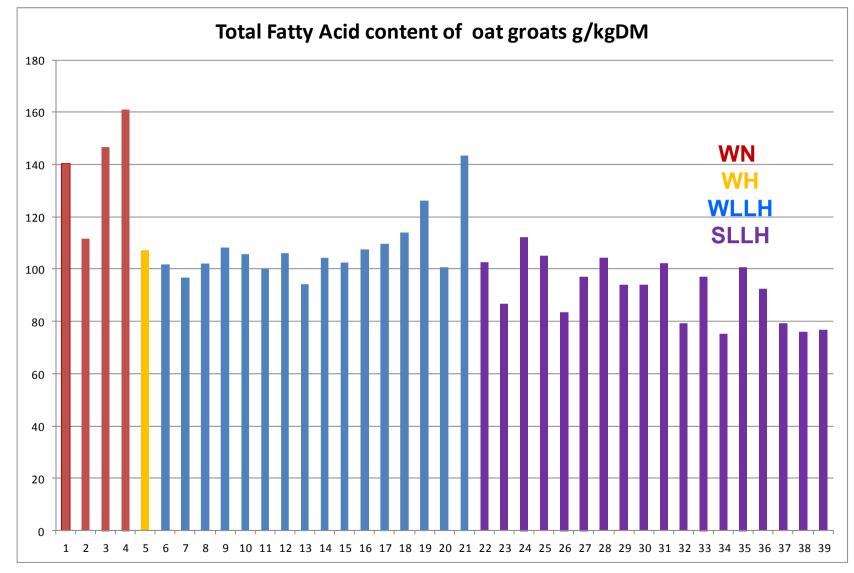
Selection	Crude Protein	Oil (B)	TME MJ/kg as fed
Gerald	11.6	8.1	11.5
Brochan	11.0	7.7	12.4
Hendon	11.3	10.2	15.3
Racoon	14.8	13.6	16.2
01-126Cn1	12.2	12.8	15.8
01-145Cn1	13.4	12.7	15.5
01-146Cn5	12.6	13.2	15.8
Zuton	14.0	9.0	15.4
Lennon	13.7	8.9	15.7
Frontier (wheat)	12.3	2.5	13.9


Literature summary of added fat vs CH₄ production

Y = 5.562 (SE = 0.590) \times % added fat; r² = 0.67; P = 0.004

High oil content reduces methane emissions

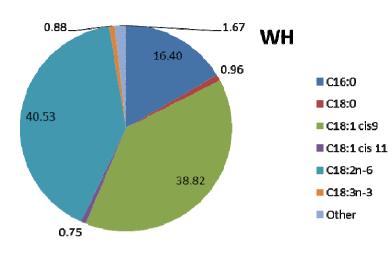
Cowan et al., 2008. Livestock and global climate change, p. 192-194.

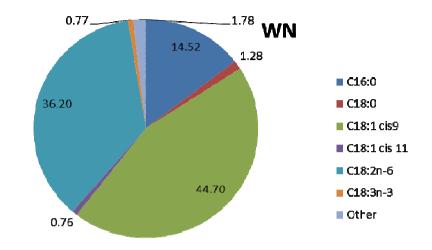

Low lignin husk oats

 It is hypothesised that a low lignin husked oat with a high oil groat would make an ideal poultry or ruminant feed

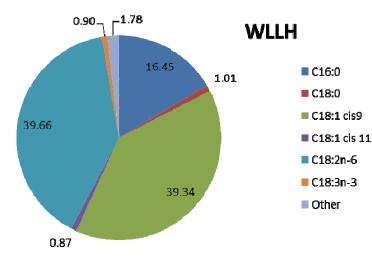
Lines were and selected analysed for oil content using FAME method

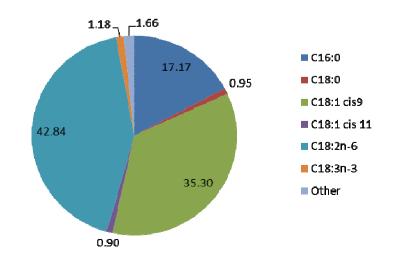
These have been grouped into 4 categories Winter Naked Oats (WN) n=4 Winter Low Lignin Husked Oats (WLLH) n=16 Spring Low Lignin Husked Oats (SLLH) n=18 Winter Husked Oat (WH) control


Winter Naked Oats (WN)Spring Low Lignin Husked Oats (SLLH)Winter Low Lignin Husked Oats (WLLH)Winter Husked Oat (WH) control


Results of Fatty acids concentrations

	WN (n=4)	WLLH (n=16)	SLLH (n=18)	sem	Significance	WH (N-1)
TFA g/kg DM	137.6c	105.7b	90.5a	6.31	***	107.1
%C16.0	14.76a	16.77b	17.47c	0.400	***	16.39
%C16.1	0.16a	0.18a	0.22b	0.010	***	
%C18.0	1.30a	1.03a	0.97b	0.100	**	0.95
%C18.1	45.5c	40.1b	36.0a	0.980	***	38.82
%C18.2	36.8a	40.ac	43.6c	0.821	***	40.53
%C18.3	0.78a	0.92a	1.20b	0.069	***	0.88


Winter Naked Oats (WN)Spring Low Lignin Husked Oats (SLLH)Winter Low Lignin Husked Oats (WLLH)Winter Husked Oat (WH) control


Main Components of Fatty acids in oat

SLLH

Ratios of Fatty acids

	Polyunsaturated: Saturated	UFA: SFA	N-3: N-6
WH	2.38	4.66	0.021
WN	2.34	5.22	0.021
WLLH	2.32	4.62	0.022
SLLH	2.42	4.43	0.027
Oatmeal *	1.90	3.62	0.053
Wheat *	2.95	3.85	0.053

*From R W Welsh 2011 in Oats :Chemistry and Technology 2nd Edition Eds FH Webster & PJ Wood

Conclusions

- A wide range in total oil content was observed from 7.5 to 16.1 %
- Generally greatest quantity of fatty acids found in C18.1, C18.2, C16.0,C18.0 (~97% of total)
- Some differences WN had highest concentration of monounsaturated and least saturated fatty acids

Conclusions

Ratios of unsaturated to saturated fatty acids alter depending on type of line studied. WN had greatest amount of unsaturated FA.

Shown variation which offers scope for future breeding and selection to develop high oil high quality oats which would be well suited as ruminant feed to improve meat and milk and may also reduce greenhouse gas emissions

Future work

- Feeding trial (Oct 2012 in sheep) to verify if reduction observed in gas production studies are confirmed in ruminants
- Feeding trial (August 2012 in turkeys) to verify the positive attributes of oats (especially naked oats with their high energy and good protein content) are continued in production of turkeys

The QUOATS project, led by Aberystwyth University (IBERS), is jointly sponsored by BBSRC, by Defra through the Sustainable Arable LINK Programme, by European Regional Development Funding through the Welsh Government's Academic Expertise for Business (A4B) Programme and through the Scottish Government Contract Research Fund with funding from AHDB and industry partners.

The project partners are: ADAS UK Ltd, Bernard Matthews Ltd, British Oat and Barley Millers' Association, Du Pont (U.K.) Limited, Felin Ganol Watermill, G B Seeds, Harper Adams University College, James Hutton Institute, Mole Valley Feed Solutions, Nairns Oatcakes Ltd, Oat Services, Organic Research Centre - Elm Farm, Phytatec (UK) Ltd, Poultry Xperience, Senova Ltd and the DairyCo, EBLEX and HGCA divisions of the Agriculture and Horticulture Development Board (AHDB).

WWW.QUOATS.ORG

HARNESSING NEW TECHNOLOGIES FOR SUSTAINABLE OAT PRODUCTION AND UTILISATION

