National Oat Breeding Program-Australia

Plant Breeding in Australia Agricultural Zones

The National Oat Breeding Program

- National program began nine years ago
- A centralised breeding program for the southern region of Australia
- Two main regions or nodes for selection in southern Australia, SA and WA
- Technical staff located at SARDI and DAFWA
- Encompasses South Australia, Western Australia, New South Wales, and Victoria for late generation evaluation

Oat Breeding Group Located at SARDI

Oat Breeding Group Located at DAFWA

Breeding Priorities

Agronomic Characters

Yield potential
Shattering resistance
Lodging resistance
Height
Maturity
Early vigour

Improved Disease Resistance Foliar

Improved Disease Resistance Soil Borne

Stem nematode Tolerance reactions

Cereal cyst nematode Tolerance reactions Resistance reactions

Grain Quality

Oil, protein, groat %
B-glucan
Hull lignin
Grain digestibility
Hectolitre weight
Screenings
1000 grain weight
Hull Colour

Hay Quality

Digestibility
WSC
NDF
ADF
Protein
Colour
Stem diameter

200-250 crosses each year -grain and hay for WA and SA

- WA germplasm used in crosses since 2003, 1st year of Nat'l Program
- Parental germplasm maintained in cold store room, 4° C

Trial Sites

Data Collection

Hay & grain yield
11 grain quality traits for milling and feed
6 hay quality traits
10 disease traits, including 7 nurseries
8 agronomic traits

Consultation

✤Field days

Visits to grower properties to talk and view crops of new varieties with millers and agronomists

Meetings with end users at least annually

Extension of New Varieties

Milling Varieties

Hay Varieties

New Hay Variety Releases

Pre-breeding Collaboration

Current Programs-funded

- Leaf and stem rust sources from wild species- P. Davies, SARDI, (GRDC)
- Develop molecular markers for CCN R & T (GRDC/SAGIT), boron toxicity, salt tolerance K. Oldach, SARDI, (RIRDC)
- Improved productivity in water limited environments (SAGIT)
- ✓ Determine if effectors identify resistant genotypes to oat septoria -Richard Oliver, Curtin University (RIRDC)
- Australian Cereal Rust Control Program, Robert Park, University of Sydney, (GRDC)

Isolated Microspore Culture method in Barley

Donor plants

Microspore preparation

Pretreatment

Source: PA Davies & PK Sidhu (SARDI)

Thank You