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750,000t produced per year

Husked oats for human consumption are increasing

Programme: winter, spring, husked and naked
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The Quality Oats (QUOATS) project brings together research organisations, levy 

boards, and industrial partners representing the oat production chain and the end 

users of the crop.

From breeder 
to plate, this 
project aims to 
harness new
technologies to 
advance the 
yield,
value and 
functionality of 
oats.



Breeding objectives
Economic competitiveness

Yield
Disease resistance

Crown rust
Powdery mildew (see poster: Pearson et al)

Lodging resistance
Nitrogen use Efficiency (see poster: Griffiths et al.a)
Milling quality

Kernel content
Size/shape (see poster: Griffiths et al. b)
β-glucan

Animal feed (Cowan et al. paper)
Oil (see poster: Cowan et al.)
Low lignin
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Requirements 
Genetic sources of enhanced β-glucan
content
Novel population development
High throughput precise phenotyping
Multi-locational testing
High throughput marker systems
Genomic resources eg ESTs, BAC libraries, 
TILLING, comparative genetics etc.



Identification of genetic variation for β- glucan content
• Oat varieties world-wide
• Wild relatives of oats

Development of high throughput screening methodology
• Modified megazyme method
• NIR

Conventional breeding using high β- glucan genetic 
sources
Identification of markers closely linked to β- glucan
content and use in marker assisted breeding
Identification of genes involved in β- glucan synthesis 
and their control – comparative genomics



Genetic improvement of β-glucan content

• High β- glucan sources
CDC-Solfi , SA 99572 Brian Rossnagel, Saskatoon
HiFi, ND9508252-9, ND030287       Mike McMullen, North Dakota
IA03146-4, IA03146-6, IA03150-5   Jan Luc Jannick, Iowa 

• Novel variation in germplasm collections, 
landraces and wild species

β- glucan content of accessions in USDA national genetic resources 
program collection (GRIN)
β- glucan content of 109  AFRI-CORE
accessions
Survey of β- glucan content 
of wild relatives:
maximum 11.3%
minimum 2.2%
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Development of high throughput 
phenotyping

• Modified McCleary (Megazyme) assay for use 
in microtitre plate

• NIR calibration (de-hulled groats)
• FT-IR
• GC-MS



β-glucan content- 2011 Aberystwyth 
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Success in improving β-glucan
content in UK spring oats



Yield of β-glucan selections



Success in improving β-glucan
content in UK winter oats



2008 2009 2011
CDC Sol-Fi 6.02 6.15 6.40
HiFi 6.18 n.d. 6.12

Spring oat mapping 
population: CDC-Solfi x HiFi
collaboration with Brian 
Rossnagel,  Aeron Beatie 
Saskatoon



CDC SolFi x HiFi genetic map

Jackson, Tinker et al



QTL associated with grain oil, protein and β-
glucan content in CDC SolFi x HiFi population 
grown in Aberystwyth
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Current work CDC Sol-Fi x HiFi mapping population
In field again this year
PhD student, Claudine Cognat (James 
Hutton Institute) under supervision of 
Derek Stewart and IBERS scientists is 
undertaking  metabolomic analysis of 
grain to understand the variability in 
metabolite content
Relate metabolomic data to genetic 
information: develop mQTLs.

Free fatty 
acids, lipids

Free amino acids, 
small peptides

Sugars

Phenolic 
compounds Volatile 

compounds

Cell wall 
architecture

Protein
β‐glucan

Starch

Moisture 
content

Fat

Flavour

Texture

Components of oat grain influencing perceived 
texture and flavour 
(Salmenkallio‐Marttila et al., 2011)



CDC Sol-Fi x HiFi mapping population

Extraction
Oat (milled) + Internal Standards
In Methanol/Water/Chloroform

Amino acids, Organic 
acids, Sugars etc.

Fatty Acids, Fatty Alcohols, 
Alkanes, Sterols.

Analysis by GC-
MS

Polar Fraction Non-Polar Fraction

Metabolomic analysis



CDC SolFi x HiFi mapping population
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Based on 41 polar 
metabolites:
•Separation between year 
2008 and 2009, due to 
higher amounts of all 
metabolites in year 2008.

•Hypothesis: oat samples 
cultivated at the same location 
in Wales, but clearly the annual 
environments were not the 
same.

PCA (Principal component Analysis) of all polar 
metabolites from CDC Solfi x HiFi population (milled 
samples), coloured by year ( :2009; : 2009). 
Components 1 and 2 explain up to 56% and 11% of the 
variation, respectively.

Data from Claudine Cognat



Population development
Bi-parental
Association mapping
MAGIC population
Nested Association mapping
Wild relatives
TILLING
QTL-NILs
Breeding programme crosses for testing/ 

validation of MAS



Novel population 
development; 
MAGIC 
(multiparent advanced 
generation inter-cross) 

8 spring oats chosen to 
sample world-wide genetic 
diversity (highlighted in 
blue  in dendrogram from 
results from DArT 
analysis) 



MAGIC population development
2009: 1st generation of crosses successfully completed (28 x 2 way 
crosses) 1 2 3 4 5 6 7 8

Ogle TAM O-301 Ac Assiniboia HiFi CDC Dancer Firth Pol SolFi
1 Ogle
2 TAM O-301 12
3 Ac Assiniboia 13 23
4 HiFi 14 24 34

5 CDC Dancer 15 25 35 45
6 Firth 16 26 36 46 56
7 Pol 17 27 37 47 57 67

8 SolFi 18 28 38 48 58 68 78

2010: 2nd generation successfully completed (28 crosses combining 4 
genotypes)

2011: 3rd generation successfully completed (42 crosses combining 8 
genotypes)

8 seeds from each of these 42 crosses sown for single seed 
descent (SSD) summer 2011 and seed harvested October 2011 (population
size 336 individuals)
2012: 2nd generation of SSD sown February 2012

Population on schedule for first field sowing in Spring 2014



NAM hexaploid populations

Common parent is Firth 
(spring)

15 populations currently at 
F4 (most have 60 progeny, 
some less)

F5 expected to be grown in  
glasshouse for preliminary 
phenotyping of at least some 
populations in summer 2012.

Parents of F4 populations all 
spring - 7 high β-glucan, 2 
low β-glucan, 4 landraces (1 
tetraploid), 4 wild species 
introgressions, 1 naked
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Avena atlantica

• Collected on Atlantic 
coast of Morocco by M. 
Leggett

• Early flowering (primary 
stem)

• Few productive tillers at 
harvest

• Seed shed
• Covered seed
• High β-glucan 

Avena strigosa

• Cultivated; Ceirch Llwyd 
(Welsh), Corc beag 
(Gaelic), sand, grey, black 
or small oat

• Late flowering (primary 
stem)

• Many productive tillers at 
harvest

• Seed held
• Naked seed
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• Leveraging information from model genomes
• Predicting gene location
• Validation
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Barb32410.9
S1426116.7
S64896 S37168
S67280 S2738121.7
S12180 S860337.9
S4076039.0
S2035541.2
S2088744.2
S2446548.0
S584651.2
cdo18752.7
TR37455.5
wms261a58.3
WMS261.860.1
LpACT26D67.7
LpACT26G72.9
S989875.3
S761175.9
S23897 S487576.5
S4704876.8
S697377.1
S355378.2
MAMA09 S1342383.1
S11690 S3781884.1
S18058 S6231
S737785.9
COS3Q S239690.9
S1258091.5
S9516 S46148
S10550 S1522092.6
RV1131.194.8
S4369497.0
S1914298.5
TR314105.7

Targeted addition of SNP markers (in 
red) to linkage group AS6 based on 
sequence homology to rice 
chromosome 1, and Brachypodium 
chromosome 2



Wheat–rice genome relationships. 

Sorrells M E et al. Genome Res. 2003;13:1818-1827JP Vogel et al. Nature 463, 763-768 (2010) 
doi:10.1038/nature08747

Brachypodium genome evolution 
and synteny between grass 
subfamilies.
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TILLING (Targeting Induced Local Lesions 
IN Genomes)

Azide treated A. strigosa (Anne Osbourn, JIC)
Validated by recovery of root metabolite 

mutants
>800 plants grown 2011, DNA and seed taken

>1600 plants growing 2012, DNA taken
DNA stocks and screening at JIC (Trevor 

Wang)

Allows identification of plants with mutations in 
given gene (NB plus 1000 other mutations!)
Can also screen for phenotypes (eg disease 

mimic, high tillering, low lignin, panicle 
architecture)



4‐C3 early flowering3‐A1 dwarf

9‐A3 high tillering
10‐E1 early 
senescence

27‐C2 high 
anthocyanin

Visible 
phenotypes 

in the 
A. strigosa 

TILLING 
population



Use of markers in breeding 
programme

• Follow beneficial alleles 
associated with traits of interest in 
breeding programme

• Identify suitable parents for 
crossing

• Confirm success of crossing
• Cultivar identification



Populations for validating marker-
trait associations

2010: 3 F2 populations selected for β-glucan:
– 08-187Cn1 (HiFi x 01-150Cn1)
– 08-60Cn2 (SolFi x 01-150Cn1)
– 08-56Cn1 (ND9508252-9 x 01-15Cn1)

2102: 12 F2 populations selected for MAS for 
range of traits including β-glucan, oil and 
disease resistance 



Advanced spring oat trial – β- glucan



Thank you

Web site http://www.QUOATS. org


