

Strategies for improvement of β-glucan content in oats

Catherine Howarth, Tim Langdon, Irene Griffiths, Sandy Cowan, Athole Marshall

> Sefydliad y Gwyddorau Biolegol, Amgylcheddol a Gwledig IBERS ABERYSTWYTH Institute of Biological, Environmental and Rural Sciences

Background

- ✤ 65% of the oats grown in UK are IBERS varieties
- 120,000 ha grown in UK
 (70% winter and 30% spring)
- 750,000t produced per year
- Husked oats for human consumption are increasing
- Programme: winter, spring, husked and naked
- Naked oats for poultry

Background

- ✤ 65% of the oats grown in UK are IBERS varieties
- 120,000 ha grown in UK
 (70% winter and 30% spring)
- 750,000t produced per year
- Husked oats for human consumption are increasing
- Programme: winter, spring, husked and naked
- Naked oats for poultry

The Quality Oats (QUOATS) project brings together research organisations, levy boards, and industrial partners representing the oat production chain and the end users of the crop.

From breeder to plate, this project aims to harness new technologies to advance the yield, value and functionality of oats.

WWW.QUOATS.ORG

HARNESSING NEW TECHNOLOGIES FOR SUSTAINABLE OAT PRODUCTION AND UTILISATION

Breeding objectives

Economic competitiveness

- ✤ Yield
- Disease resistance
 - Crown rust
 - Powdery mildew (see poster: Pearson et al)
- Lodging resistance
- Nitrogen use Efficiency (see poster: Griffiths et al.a)
- Milling quality
 - Kernel content
 - Size/shape (see poster: Griffiths et al. b)
 - ≻ β-glucan
- Animal feed (Cowan et al. paper)
 - ➢ Oil (see poster: Cowan et al.)
 - > I ow lianin

WWW.QUOATS.ORG

HARNESSING NEW TECHNOLOGIES FOR SUSTAINABLE OAT PRODUCTION AND UTILISATION

Breeding objectives

- **Economic competitiveness**
- ✤ Yield
- Disease resistance
 - Crown rust
 - > Powdery mildew (see poster: Pearson et al)
- Lodging resistance
- Nitrogen use Efficiency (see poster: Griffiths et al a)
- Milling quality
 - Kernel content
 - Size/shape (see poster: Griffiths et al b)

≽ β-glucan

- Animal feed (Cowan et al paper)
 - > Oil
 - > I ow lianin

Requirements

- Genetic sources of enhanced β-glucan content
- Novel population development
- High throughput precise phenotyping
- Multi-locational testing
- High throughput marker systems
- Genomic resources eg ESTs, BAC libraries, TILLING, comparative genetics etc.

> Identification of genetic variation for β - glucan content

- Oat varieties world-wide
- Wild relatives of oats

Development of high throughput screening methodology

- Modified megazyme method
- NIR
- Conventional breeding using high β- glucan genetic sources
- Identification of markers closely linked to β- glucan content and use in marker assisted breeding
- Identification of genes involved in β- glucan synthesis and their control – comparative genomics

Genetic improvement of β-glucan content

High β- glucan sources

CDC-Solfi , SA 99572
 HiFi, ND9508252-9, ND030287
 IA03146-4, IA03146-6, IA03150-5
 Brian Rossnagel, Saskatoon
 Mike McMullen, North Dakota
 Jan Luc Jannick, Iowa

Novel variation in germplasm collections, landraces and wild species

- β- glucan content of accessions in USDA national genetic resources program collection (GRIN)
- β- glucan content of 109 AFRI-CORE accessions
- Survey of β- glucan content of wild relatives: maximum 11.3% minimum 2.2%

Development of high throughput phenotyping

- Modified McCleary (Megazyme) assay for use in microtitre plate
- NIR calibration (de-hulled groats)
- FT-IR
- GC-MS

WWW.QUOATS.ORG

HARNESSING NEW TECHNOLOGIES FOR SUSTAINABLE OAT PRODUCTION AND UTILISATION

β-glucan content- 2011 Aberystwyth

WWW.QUOATS.ORG

HARNESSING NEW TECHNOLOGIES FOR SUSTAINABLE OAT PRODUCTION AND UTILISATION

Success in improving β-glucan content in UK spring oats

Yield of β-glucan selections

HARNESSING NEW TECHNOLOGIES FOR SUSTAINABLE OAT PRODUCTION AND UTILISA

Success in improving β-glucan content in UK winter oats

QUOATS.ORG

Spring oat mapping population: CDC-Solfi x HiFi collaboration with Brian Rossnagel, Aeron Beatie Saskatoon

	2008	2009	2011
CDC Sol-Fi	6.02	6.15	6.40
HiFi	6.18	n.d.	6.12

CDC SolFi x HiFi genetic map

10	26	36	40	96	9C	PC-TTA
	KEEDER		11 100	41		
				101		Jack Distriction on Designed And
UNIC-F	114	134	154	-	374-70	-
	111 111 111 111 111 111 111 111	11 - 00,001,001,00 11 - 00,001,000,00 14 - 00,000,00 14 - 00,000,000,00 14 - 00,000,000,000,000,000,000,000,000,00		11		11 12 12 12 12 12 12 12 12 12
90	tep	120	140	180	340	110
Local Contractor	na	14		143	(# 100,000,000,000,000,000,000,000,000,000	
	an Longerage analysis	21 - 12 (12, 22)			Jackson	Tinker et al

HARNESS R SUSTAINAR

0.0 1.0 SNP5C24 SNP5C26

QTL associated with grain oil, protein and β glucan content in CDC SolFi x HiFi population grown in Aberystwyth

Current work CDC Sol-Fi x HiFi mapping population

- In field again this year
- PhD student, Claudine Cognat (James Hutton Institute) under supervision of Derek Stewart and IBERS scientists is undertaking metabolomic analysis of grain to understand the variability in metabolite content
- Relate metabolomic data to genetic information: develop mQTLs.

WWW.QUOATS.ORG

HARNESSING NEW TECHNOLOGIES FOR SUSTAINABLE OAT PRODUCTION AND UTILISATION

Metabolomic analysis

CDC SolFi x HiFi mapping population

PCA (Principal component Analysis) of all polar metabolites from CDC Solfi x HiFi population (milled samples), coloured by year (■:2009; ■: 2009). Components 1 and 2 explain up to 56% and 11% of the variation, respectively.

Based on 41 polar metabolites:

•Separation between year 2008 and 2009, due to higher amounts of all metabolites in year 2008.

•*Hypothesis*: oat samples cultivated at the same location in Wales, but clearly the annual environments were not the same.

Data from Claudine Cognat

www.QUOATS.org

HARNESSING NEW TECHNOLOGIES FOR SUSTAINABLE OAT PRODUCTION AND UTILISATION

Population development

- ≻Bi-parental
- Association mapping
- MAGIC population
- Nested Association mapping
- ➤Wild relatives
- ≻TILLING
- ≻QTL-NILs

Breeding programme crosses for testing/ validation of MAS

Novel population development; MAGIC

(multiparent advanced generation inter-cross)

8 spring oats chosen to sample world-wide genetic diversity (highlighted in blue in dendrogram from results from DArT analysis)

MAGIC population development

crosses)

2009: 1st generation of crosses successfully completed (28 x 2 way

		1	2	3	4	5	6	7	8
		Ogle	TAM O-301	Ac Assiniboia	HiFi	CDC Dancer	Firth	Pol	SolFi
1	Ogle								
2	TAM O-301	12							
3	Ac Assiniboia	13	23						
4	HiFi	14	24	34					
5	CDC Dancer	15	25	35	45				
6	Firth	16	26	36	46	56			
7	Pol	17	27	37	47	57	67		
8	SolFi	18	28	38	48	58	68	78	

2010: 2nd generation successfully completed (28 crosses combining 4 genotypes)

2011: 3rd generation successfully completed (42 crosses combining 8 genotypes)

8 seeds from each of these 42 crosses sown for single seed descent (SSD) summer 2011 and seed harvested October 2011 (population size 336 individuals)

2012: 2nd generation of SSD sown February 2012

Population on schedule for first field sowing in Spring 2014

NAM hexaploid populations

Common parent is Firth (spring)

≻15 populations currently atF4 (most have 60 progeny, some less)

➢F5 expected to be grown in glasshouse for preliminary phenotyping of at least some populations in summer 2012.

Parents of F4 populations all spring - 7 high β -glucan, 2 low β -glucan, 4 landraces (1 tetraploid), 4 wild species introgressions, 1 naked

Genetic diversity of MAGIC, NAM parents and selected winter oats (63 SSRs)

WWW.QUOATS.ORG

HARNESSING NEW TECHNOLOGIES FOR SUSTAINABLE OAT PRODUCTION AND UTILISATION

Population development

- >Bi-parental
- >Association mapping
- >MAGIC population
- Nested Association mapping
- ➤Wild relatives
- ≻TILLING
- ≻QTL-NILs

Breeding programme crosses for testing/ validation of MAS

Avena atlantica

- Collected on Atlantic coast of Morocco by M. Leggett
- Early flowering (primary stem)
- Few productive tillers at harvest
- Seed shed
- Covered seed
- High β-glucan

Avena strigosa

- Cultivated; Ceirch Llwyd (Welsh), Corc beag (Gaelic), sand, grey, black or small oat
- Late flowering (primary stem)
- Many productive tillers at harvest
- Seed held
- Naked seed

Avena atlantica

- Collected on Atlantic coast of Morocco by M. Leggett
- Early flowering (primary stem)
 - Pew productive tillers at harvest
 - ed shed
 - Covored seec
- High β-glucan

Avena strigosa

- Cultivated; Celloh Elwyd (Telst), Corc bear (Gaelic), sand, grey, black or small oat
- Late flowering (primary stem)
- Many productive tillers at harvest
- Seed held
- Naked seed

AS1	AS2	AS3	AS4	AS5	AS6	AS7
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 S3106R3 0.0 S7114R3 S400R9 S1177R9 1.2 S25170R9 3.4 S600R9 5.7 S123287R9 5.7 S123287R9 5.7 S123287R9 5.7 S123287R9 3.3.3 AME067d 3.4.4.7 S89207R9 5.7 S12281R9 5.82231R9 S32408R3 3.3.3 AME067d 3.4.7 S89204R3 S12281R9 S12281R9 S12281R9 S12281R9 S12481R9 S9060R9 5.7 S1241R9 S1241R9 S80207R3 S1241R9 S80207R9 5.14118R9 S8060R9 90.9 S12410R9 S20074R9 S12420R1 10.7 S23408R3 11.8 S132408R3 95.9 S14118R9 S20074R9 S12420R1 10.7 S23408R3 S20074R9 S1344873	0.0 0.0 0.6 0.6 0.6 0.6 0.6 0.6	0.0 TR369 4.8 7.1 7.1 ST754R2 7.5 S1439R2 S1212R2 10.0 ST754R2 20.5 S3932R2 22.8 F18439R2 S1212R2 11.0 S3932R2 22.8 F18439R2 S1212R2 11.1 S3757R5 22.8 F18439R2 S1017R2 23.4 S375767L 37.4 F1712R5 37.4 S45376761 41.5 S10139R2 51.6 S10139R2 51.6 S10139R5 52.8 S10139R5 53.4 S10139R5 53.6 S10139R5 53.6 S10139R5 51.6 S1028R5 53.4 S10139R5 53.4 S10139R5 53.4 S10139R5 53.4 S112885 53.5 S5269R5 53.7 S5461R5 53.6 S44183 53.7 S5461R5 53.7 </th <th>0.0 0.0 9.4 14.6 14.6 15.395272 16.5 15.395272 18.2 15.395272 20.8 15.395272 21.5 15.395272 20.6 15.395272 20.6 15.394272 20.6 15.394272 20.6 15.394272 20.6 15.394272 20.6 15.394272 20.6 15.394272 20.7 15.394272 20.8 15.394272 20.6 15.394272 20.6 15.394272 20.6 15.394272 20.6 15.394272 20.6 15.394272 20.6 15.394272 20.6 15.39477 20.6 15.39477 20.6 15.39477 20.6 15.39477 20.7 15.39477 20.8 15.256777 20.8 17.257871 20.7 15.125671 AME159</th> <th>0.0 FR314 9.8 Stel44R1 9.8 FW1131.1 13.1 S46148R1 13.7 S1220871 13.7 S2396R1 13.7 S2396R1 25.9 S7377R1 25.9 S7377R1 26.9 S7018R1 5122012 S7618R1 26.9 S7018R1 5122087 S2896R1 25.9 S7018R1 5122012 S7618R1 26.9 S7618R1 5122012 S7618R1 27.9 S9848R1 34.2 UpACT260 34.3 Umm261a 43.5 Cob187 5808R1 S2086R1 5808R1 S2086R1 5808R1 S2086R1 5808R1 S20356R1 63.0 S24468R1 58028R1 S20356R1 63.1 S24261R1 93.3 S1230R1 93.1 S12461R1 93.4 S412488R1 94.4 S451289R1</th> <th>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</th>	0.0 0.0 9.4 14.6 14.6 15.395272 16.5 15.395272 18.2 15.395272 20.8 15.395272 21.5 15.395272 20.6 15.395272 20.6 15.394272 20.6 15.394272 20.6 15.394272 20.6 15.394272 20.6 15.394272 20.6 15.394272 20.7 15.394272 20.8 15.394272 20.6 15.394272 20.6 15.394272 20.6 15.394272 20.6 15.394272 20.6 15.394272 20.6 15.394272 20.6 15.39477 20.6 15.39477 20.6 15.39477 20.6 15.39477 20.7 15.39477 20.8 15.256777 20.8 17.257871 20.7 15.125671 AME159	0.0 FR314 9.8 Stel44R1 9.8 FW1131.1 13.1 S46148R1 13.7 S1220871 13.7 S2396R1 13.7 S2396R1 25.9 S7377R1 25.9 S7377R1 26.9 S7018R1 5122012 S7618R1 26.9 S7018R1 5122087 S2896R1 25.9 S7018R1 5122012 S7618R1 26.9 S7618R1 5122012 S7618R1 27.9 S9848R1 34.2 UpACT260 34.3 Umm261a 43.5 Cob187 5808R1 S2086R1 5808R1 S2086R1 5808R1 S2086R1 5808R1 S20356R1 63.0 S24468R1 58028R1 S20356R1 63.1 S24261R1 93.3 S1230R1 93.1 S12461R1 93.4 S412488R1 94.4 S451289R1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	155.9 • TR147 157.0 • AME088 157.0 • AME088 157.0 • AME088 157.0 • SAMDER9 159.5 • SC044R1 159.5 • SC044R1 159.5 • SA972R12 169.2 • SA972R12 189.6 • S3922R7 S39326R1 198.6 I S3922R7 S39326R1 205.2 • S12141R1 205.3 • S12141R1 206.3 I S16962R7 209.2 S3154R3 S3154R3 S3154R3 211.4 · S8222R7 15.4 · S8222R7 226.2 · S300R7 231.4 · S8222R7 231.4 · S8222R7 247.4 · S1662R3 S16662R7 231.4 · S8222R7 247.3 · S16462R3 S16662R7 231.4 · S8224R7 247.4 · S3154R6 S3154R3 238.6 · AM001 239.2 · S3154R6 S3154R3 240.9 · AM6062 <th>Gen strig pop DAr hom</th> <th>etic Lin yosa x A ulation T-seq S iology t</th> <th>kage m A<i>. atlant</i> incorpo NPs wit o rice s</th> <th>ap of <i>f</i> tica orating th equenc</th> <th>A. R R R R R R R R R R R R R R R R R R R</th>	Gen strig pop DAr hom	etic Lin yosa x A ulation T-seq S iology t	kage m A <i>. atlant</i> incorpo NPs wit o rice s	ap of <i>f</i> tica orating th equenc	A. R R R R R R R R R R R R R R R R R R R

Rice 1
Rice 2
Rice 3
Rice 4
Rice 5
Rice 6
Rice 7
Rice 8
Rice 9
Rice 10
Rice 11
Rice 12

- Leveraging information from model genomes
- Predicting gene location
- Validation

S10550 S15220

RV1131.1

S43694

S19142

TR314

94.8

97.0

98.5

105.7

Targeted addition of SNP markers (in red) to linkage group AS6 based on sequence homology to rice chromosome 1, and Brachypodium chromosome 2

Brachypodium genome evolution and synteny between grass subfamilies.

JP Vogel *et al. Nature* 463, 763-768 (2010) doi:10.1038/nature08747

Wheat-rice genome relationships.

Sorrells M E et al. Genome Res. 2003;13:1818-1827

Diploid oat- rice genome relationships

Rice 1
Rice 2
Rice 3
Rice 4
Rice 5
Rice 6
Rice 7
Rice 8
Rice 9
Rice 10
Rice 11
Rice 12

TILLING (Targeting Induced Local Lesions IN Genomes)

Azide treated *A. strigosa* (Anne Osbourn, JIC) Validated by recovery of root metabolite mutants >800 plants grown 2011, DNA and seed taken >1600 plants growing 2012, DNA taken DNA stocks and screening at JIC (Trevor Wang)

Allows identification of plants with mutations in given gene (NB plus 1000 other mutations!) Can also screen for phenotypes (eg disease mimic, high tillering, low lignin, panicle architecture)

Use of markers in breeding programme

- Follow beneficial alleles associated with traits of interest in breeding programme
- Identify suitable parents for crossing
- Confirm success of crossing
- Cultivar identification

Populations for validating markertrait associations

2010: 3 F2 populations selected for β-glucan:

- 08-187Cn1 (HiFi x 01-150Cn1)
- 08-60Cn2 (SolFi x 01-150Cn1)
- 08-56Cn1 (ND9508252-9 x 01-15Cn1)
- 2102: 12 F2 populations selected for MAS for range of traits including β -glucan, oil and disease resistance

WWW.QUOATS.ORG

HARNESSING NEW TECHNOLOGIES FOR SUSTAINABLE OAT PRODUCTION AND UTILISATION

Advanced spring oat trial – β - glucan

Web site http://www.QUOATS. org

Sefydliad y Gwyddorau Biolegol, Amgylcheddol a Gwledig IBERS ABERYSTWYTH Institute of Biological, Environmental and Rural Sciences